CS-200
Computer Architecture

Part 2a. Processor, 1/0Os, and Exceptions
Multicycle Processor

Paolo lenne

<paolo.ienne@epfl.ch>

The Contract between HW and SW

Applications

Databases Software

Compilers

Assembler

] \
Gates
: Hardware
Transistors

ISA

The Processor

A

W Register

MemDataOut File

B
Data

Memory AW Wr AA AB

MemDataln
Wr

Address

Control Logic (Read, Decode, Update PC)

MemData

Program dd
= Counter (PC) Q el
Instruction
Memory

Central
Processing
Unit

Unified Memory

CPU

A

Register

W .
File

MemDataOut
B

-2 Data

Memory

AW Wr AA AB

MemDataln

Address |€ Wi |

Control Logic (Read, Decode, Update PC)
e (
= Counter (PC) Q el

1

MemData

Instruction
Memory

A Big Finite-State Machine

CPU

A

Register

W .
File

MemDataOut

B

\

Data
Memory AW Wr AA AB
MemDataln

Wr

Address

Control Logic (Read, Decode, Update PC)

MemData
Program dd
= Counter (PC) Q el
Instruction
Memory

1

Single-Cycle Processor

Execute an
instruction

not break

PC & PC+4

Propagation Time

The longest combinational
path determines the
operating frequency:

critical path

These could be the same register—e.g., pc

Increasing the Frequency?

Critical
path is
now
halved

Two-Cycle Processor

4 h

Did we gain
anything?

Start
an
instruction

|l ' not break

Complete
the
instruction

1 instruction
per cycle
at frequency F

1 instruction
every two cycles
at frequency 2F

_ J

Not All Paths Are Born Equal!

Executing andi is quite fast

Executing 1w %. %
involves more and

slower paths

And Maybe Memories Are Sequential

cycle# 1 2

k™
address I
s/
read _/ |\
rddata . daf——

N7

One cycle delay

‘-----l ll.....
‘I L
“‘
o® Ya,
“‘ Ya,
o «

Start
a Load

One cycle delay

Complete
a Load

Multi-Cycle Processor

4 H N
@ y Get the

_

instruction
from memory

Multi-Cycle Processor

“Understand” the
instruction and take a
different path as needed
(different resources to
(control, different
complexity)

Decode

Dal

Multi-Cycle Processor

Decode

Simple instructions \
such as andi take a
single cycle to execute

Multi-Cycle Processor

Complex ones such
as 1w take longer

Multi-Cycle Processor

\/
(We will try \ /
@ not to have too
many stages <
Decode

@ to have paths as

\balanced as possible)

ALU/Branch

Mealy or Moore?

excitation
[)

L4

Inputs

Mealy FSM

|
|
|
|
|
| Next-State State Output
! Logic Memory CulTent state Logic ~ messiwss) Outputs
| f(...) g(...) 1
| : Output depends on
I L]
| ! input and state :
: | Sometimes
Clock 1 1 .
o ! this needs

more cycles...

e |
! 1

! 1

: excitation :

:

1

Inputs E———) [>
: Next-State G current state OUtpUt Moore FSM ._'and
I Logic Memor Logic sy Qutputs ;
| ft.-) ! ql..) ! sometimes
| > | Output depends on this is not
! I
: ! state only acceptable
Clock : :
! 1

/

Building the Circuit

CPU

Controller ak] clk
clk clk rstn—p»] rst_n

rst_n

Yy

PC

we p—— Wwe
ﬁ addr

» addr

An “empty” FSM j
(we still do not know
what we need to control...) Basic registers

we need

Add Progressively What We Need

CPU

Controller

clk

Y

clk

rst_n —Jm}

clk —ym]

-

v

clk
rst n
en

PC

rst_n | rstn

we
addr

en

>IR \
/

We will need an
Instruction Register to
memorize the instruction
coming from memory

A
O
O

rdata

We will need to enable these registers
when there is something new to record
- we will have the FSM generate them

Follow the Functionality

CPU Controller

clk
rst_n

YyYVvy

l

When an instruction arrives into IR,
the controller needs to know what it is
(the next state depends on it!)

— connect IR to the controller

I-Type Instructions Need RF and ALU

Controller
r rf_we —rffwa

'(\

wab2 0] More and more
control signals

clk
rst n

YVYyY

clk

ab Reg |Ste r 32 >ALU 2
o File

wren

Yy

wrdata

= % T _
2 a
YVY i*
Y

I-Type Instructions Need RF and ALU

CPU
clk — rfwe . . .
rst_n There is some ambiguity
in what we consider part
,/ of the FSM and what not
. (maybe the most trivial
Controller parts are clearer outside)
5 en 9 op_alu
IR
> k3 clk A >
:Z Register 2 > ALU
e File »
rf_we—P»1 Wren
’—b wrdata

R-Type Instructions Need a Second Operand

add to, ti1, t2
CPU

Controller

clk
rst_n

YVYY

instruction

D en Q instr 32
IR
>

Y

]

wrdata

op_alu
6
5clk—> C|k 5 30
L’ da
L»S s Register > ALU 2
5 — o
>law File >

rf_we—3» wren b

Y

[

U-Type Instructions Write an Immediate

lui to, 1234

CPU Controller

clk
rst n

¢V Y

D <l Q instr \
IR
> ok] clk ,
a» Register B
e File

wren b
wrdata

ﬁiv

Load and Stores Produce a Memory Address

lw t0, 16(t1)

CPU

I_i
clk clk * rf_mwe
rst. n E

#V Y

instruction

we —R——3» WE

ir_en r
0
1 32 » addr
D S Q instr 32 T
IR g L sel_addr
> cc—] clk »
5 a

" Register

32
aw File _—>|i%>
wren b
wrdata

v
N4 :
= =
c

Loads Write the Read Data into the RF
lw t@, 16(t1)

Controller
sel_imm|
Clk] clk rf_we j— rf_
sel_addr p— sel_addr
rst_ n »-] IS sel_b
- sel_mem p—— sel_mem
—»-] in pc_
e
p_alu 7Lsop |
imm
» addr
rdata 3 D Sl Q instr

IR
> ak—3] clk . 52
R aa
32

s Register
aw File

wren b

wrdata

YVYy
3
\ @

Stores Send an Operand to Memory

sw t@, 16(t1)

Controller
clk | clk S;Eir:emn
sel_addr p— sel_addr
rSt_n o | sel b}— sel_b
> S en
WE mmee] _>We
. p_alu 7_46 op_al
» addr
en
D Q
IR
> clk
aa .
a Register
aw File
wren
wrdata
[»wdata]
|

Branches Need to Write an Offset to the PC

neq to, tl, 1234

clk
rst n

CPU

en

IR

EV \

Controller

SSSSS m

clk 51 clk
rst_n

= PC

sel_pc_base\

add_imm

imm

addr

clk
aa

ab
aw
wren

wrdata

x
Register
File

Clearly, the PCis no
longer a simple register
but contains some logic
needed to compute the

\J new value...

...and bit 0 of the ALU result

matters to the PC update

jal Needs to Store PC + 4 in the RF

jal ra, 1mm

Controller e I
sel_imm
branch_op rst.n—p1 St N
Clk 1 clk rf_we — rf_we
rst n | rst_ SEL::I?I; ‘—bj : en PC
- |
/—b instructi * _pr:_eer:
pc_sel_pc_base y sel_pc_base
pc_add_imm »1 add_imm
»| imm
sel_pcfp— sel_p ﬁ
op_:lls addr
imm 32
2 nstr
D Q
> clk —=1 clk
d
aa .
+» Register B ,
5
»| aw 1
File

rf we—3» wren b 0
|—b wrdata 1 ‘

Jumps Need to Write an Address to the PC
jalr x0, e(ra)

clk
rst_ n

CPU

clk
rst_n

“ PC

sel_pc_base
add_imm

imm

wrdata

Controller s
sel_imm

branch_op rst_n —Jm

»1 clk rf we f— rf_we j :
sel_addr
=i rst sel_b ’—»
sel_mem
/—) instruction pc_en
pc_sel_pc_base
pc_add_imm
pc_sel_alu
sel_pcp— sel_p —I
we
op_alu
imm
32
clk—m1 clk
aa .
s Register
> File
f_we—»1 Wren

Time to Go Back to the FSM!

PC € PC+4

\ Once every loop
through the FSM

(= every instruction)
we want to update the PC

sel addr €0

In Fetchl we want the memory
address from the PC...

...but in Load1l we want the
address to come from the ALU!

Decode

ALU/Branch

sel addr €1

—

And We Can Still Change the FSM...

— Why testing again
something which we update PC €1
already tested?

update_ PC < 1if Branch Execute
E>
h

rf_we € 1if ALU Branch
Memory

Decode

ALU/Branc

rf we<€1

Two separate states may be
simpler and cleaner...
(but either solution is fine!)

Do Not Write Verilog until Done!

Verilog and VHDL are HDLs > Hardware Description Languages
Describe something only when it is perfectly clear:

— You have drawn a diagram like the one of the previous slide

— You have clearly identified combinational and sequential blocks

Always decompose complex sequential blocks
— Describe only sequential blocks that are simple registers (e.g., IR)

— Draw hierarchical diagrams until sequential blocks are trivial

Use a hierarchical approach (much as in programming) and use
your diagrams to guide the creation of modules (e.g., PC)

Formal FSM Write Only Simple Stuff

— Ready to write

1\
C clk —J| clk
C|k e rst.n—3»1 rSt_n
rst_n ’_, i PC
el pe base Combinational
selebini components
mm
| »{sel_alu - Ready to write
alu_res7&> alu addr
.;zooooooooo.
°
en : °
D Q instr 32 Op_al: ° PY
IR . .
> clk : °
aa . ® []
s Register > ALU ferks .
aw 1 []
w2l Wren Flle oLy
. . wrdata :
Simple sequentlal/ o,
components e
- Ready to write

4

of Complex Stuff

Complex sequential
component (= not simple

“Open the Box’

CPU Controller register, not a memory)
. | v —> Not ready to write,
rst_n > ,—» needs a diagram!
/—) instruction e s pc_p;;ir;
pc_add_imm /
pc_sel_alu
sel_pcp— sel_pc —I
D an Q instr 32
IR
> ak—] clk .
o a» Register .
Complex combinational component —= 5]aw =z
. . rf_we b
(= not just an “if” statement, not a e A
simple logic function) r
— Probably, not ready to write, a =
diagram makes it safer!

Detail Complex Combinational Modules

op Add/Sub
32
A // > cin
/32
A 32 > + 7R
B VA > cout
S sub > Y
B >
op—~2 Y Y
4 R ops.0 ops.4 carry zero
A—~£ A
32
B— B add/sub R 0 S
— carry zero ;12 7L>S
—>| 3
» A carry zero diffs :
Bsi comparator R [~
—» 020
> A . . 32
> B logical unit R
N—>] 0p2.0
> A . . /32
Bso shift unit R [7
~—31 OpP2.0
ALU

Write Verilog by Sticking to Basic Patterns

always @ (*)

Combinational begin
* always@ (=) is used to describe a block with combinational logic. The * symbol is used in the if (a)
sensitivity list to trigger the block whenever any of the inputs are changed; therefore, the outputs = ~b:
reflect the inputs change. y =)
else
7 y = b; You can write much
Verilog guidelines in Moodle end more complex

combinational blocks
(e.g., next state in FSMs)...

always @ (posedge clk) ...but this is just about the

begin]
if (reset == 1) most complex sequential block
q <= 0; you want to write!
else if ((enablel == 1) && (enable2 == 1)) (only registers and counters)
q <= d;
end

Sequential

* always@ (posedge clk) is used to describe a block with sequential logic i.e., has flip-flops.
The two keywords posedge and negedge determine whether the active clock edge of the flip-flops
is the rising or the falling clock edge respectively.

Three Blocks per FSM, Always!

Clock

Next-State Logic State memory Output Logic !
i (Combinational) (Sequential) (Combinational)
Ingiis always @ (*) always @(posedge CLK) always @ (*) :
: begin % begin S begin Outputs .
| Snext = .. S <= Snext; Z = .. 5 Mealy
end >end end i
______________________ MEALY FSM |
| Next-State Logic State memory Output Logic
| (Combinational) (Sequential) (Combinational)

y Ing uts always @ (*) < always @(posedge CLK) . always @ (*)

Clock

ext

: begin begin begin Outputs
| Smext = .. T— S <= Snext; Z = .. , Z Moore
! end end end :

>

MOORE FSM

Beware of Zero-Delay Simulation!

CLKJ$_/_\ELR_/_ cak [\ [\ \J [
/A_*l

\ "

D | |] D

\v? 7[
/B /B

Real delays suggest causality Alas, all this is lost in
zero-delay simulation

even shows causality explicitly

with arrows in difficult debugging situations

A good timing diagram
[Consider redrawing by hand }

References

e Patterson & Hennessy, COD — RISC-V Edition
— Chapter 4; only Section 4.1 to 4.5

	CS-200�Computer Architecture�—�Part 2a. Processor, I/Os, and Exceptions�Multicycle Processor
	The Contract between HW and SW
	The Processor
	Unified Memory
	A Big Finite-State Machine
	Single-Cycle Processor
	Propagation Time
	Increasing the Frequency?
	Two-Cycle Processor
	Not All Paths Are Born Equal!
	And Maybe Memories Are Sequential
	Multi-Cycle Processor
	Multi-Cycle Processor
	Multi-Cycle Processor
	Multi-Cycle Processor
	Multi-Cycle Processor
	Mealy or Moore?
	Building the Circuit
	Add Progressively What We Need
	Follow the Functionality
	I-Type Instructions Need RF and ALU
	I-Type Instructions Need RF and ALU
	R-Type Instructions Need a Second Operand
	U-Type Instructions Write an Immediate
	Load and Stores Produce a Memory Address
	Loads Write the Read Data into the RF
	Stores Send an Operand to Memory
	Branches Need to Write an Offset to the PC
	jal Needs to Store PC + 4 in the RF
	Jumps Need to Write an Address to the PC
	Time to Go Back to the FSM!
	And We Can Still Change the FSM…
	Do Not Write Verilog until Done!
	Write Only Simple Stuff
	“Open the Box” of Complex Stuff
	Detail Complex Combinational Modules
	Write Verilog by Sticking to Basic Patterns
	Three always Blocks per FSM, Always!
	Beware of Zero-Delay Simulation!
	References

