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The Contract between HW and SW
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The Processor
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Unified Memory
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A Big Finite-State Machine
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Single-Cycle Processor
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Propagation Time

The longest combinational
path determines the
operating frequency:

critical path

These could be the same register—e.g., pc




Increasing the Frequency?
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Two-Cycle Processor
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Not All Paths Are Born Equal!

Executing andi is quite fast

Executing 1w %. %
involves more and

slower paths




And Maybe Memories Are Sequential

cycle# 1 2

k™
address I
s/
read _/ |\
rddata . daf——

N7

One cycle delay

‘-----l ll.....
‘I L
“‘ ....
o® Ya,
“‘ Ya,
o «

Start
a Load

One cycle delay

Complete
a Load




Multi-Cycle Processor
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Multi-Cycle Processor

“Understand” the
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different path as needed
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complexity)
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Multi-Cycle Processor

Decode

Simple instructions \
such as andi take a
single cycle to execute




Multi-Cycle Processor

Complex ones such
as 1w take longer




Multi-Cycle Processor
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Mealy or Moore?
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Building the Circuit
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Add Progressively What We Need
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Follow the Functionality
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I-Type Instructions Need RF and ALU
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I-Type Instructions Need RF and ALU
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R-Type Instructions Need a Second Operand
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U-Type Instructions Write an Immediate
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Load and Stores Produce a Memory Address
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Loads Write the Read Data into the RF
lw t@, 16(t1)
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Stores Send an Operand to Memory
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Branches Need to Write an Offset to the PC

neq to, tl, 1234
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\J new value...

...and bit 0 of the ALU result
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jal Needs to Store PC + 4 in the RF
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Jumps Need to Write an Address to the PC
jalr x0, e(ra)
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Time to Go Back to the FSM!

PC € PC+4

\ Once every loop
through the FSM

(= every instruction)
we want to update the PC
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And We Can Still Change the FSM...

— Why testing again
something which we update PC €1
already tested?

update_ PC < 1if Branch Execute
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Do Not Write Verilog until Done!

Verilog and VHDL are HDLs > Hardware Description Languages
Describe something only when it is perfectly clear:

— You have drawn a diagram like the one of the previous slide

— You have clearly identified combinational and sequential blocks

Always decompose complex sequential blocks
— Describe only sequential blocks that are simple registers (e.g., IR)

— Draw hierarchical diagrams until sequential blocks are trivial

Use a hierarchical approach (much as in programming) and use
your diagrams to guide the creation of modules (e.g., PC)




Formal FSM Write Only Simple Stuff
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4

of Complex Stuff
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Detail Complex Combinational Modules
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Write Verilog by Sticking to Basic Patterns

always @ (*)

Combinational begin
* always@ (=) is used to describe a block with combinational logic. The * symbol is used in the if (a )
sensitivity list to trigger the block whenever any of the inputs are changed; therefore, the outputs = ~b:
reflect the inputs change. y = )
else
7 y = b; You can write much
Verilog guidelines in Moodle end more complex

combinational blocks
(e.g., next state in FSMs)...

always @ (posedge clk) ...but this is just about the

begin ]
if (reset == 1) most complex sequential block
q <= 0; you want to write!
else if ((enablel == 1) && (enable2 == 1)) (only registers and counters)
q <= d;
end

Sequential

* always@ (posedge clk) is used to describe a block with sequential logic i.e., has flip-flops.
The two keywords posedge and negedge determine whether the active clock edge of the flip-flops
is the rising or the falling clock edge respectively.




Three Blocks per FSM, Always!
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Beware of Zero-Delay Simulation!

CLKJ$\_/_\ELR\_/_ cak [\ [\ \J [
/A_*l

\ "

D | | ] D

\v? 7[
/B /B

Real delays suggest causality Alas, all this is lost in
zero-delay simulation

even shows causality explicitly

with arrows in difficult debugging situations

A good timing diagram
[ Consider redrawing by hand }
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