
1

CS-200
Computer Architecture

—
Part 2a. Processor, I/Os, and Exceptions

Multicycle Processor

Paolo Ienne
<paolo.ienne@epfl.ch>

2

The Contract between HW and SW

ISA

Transistors
Gates

Assembler

Compilers

Databases

Applications

Software

Hardware

3

The Processor
Central

Processing
Unit

4

Unified Memory

=
=

5

A Big Finite-State Machine

6

Single-Cycle Processor

Execute an
instruction

PC  PC + 4

Halt

break

not break

7

Propagation Time

The longest combinational
path determines the
operating frequency:

critical path

These could be the same register—e.g., pc

8

Increasing the Frequency?

Critical
path is

now
halved

9

Did we gain
anything?

1 instruction
per cycle

at frequency F

1 instruction
every two cycles
at frequency 2F

Two-Cycle Processor

Start
an

instruction

Halt

break

not break

Complete
the

instruction

1
0

Not All Paths Are Born Equal!

Executing andi is quite fast

Executing lw
involves more and

slower paths

1
1

And Maybe Memories Are Sequential

One cycle delay
Start

a Load
Complete

a Load

One cycle delay

1
2

Multi-Cycle Processor

Fetch1 Fetch2

Get the
instruction

from memory

1
3

Multi-Cycle Processor

Fetch1 Fetch2

Decode

“Understand” the
instruction and take a

different path as needed
(different resources to

control, different
complexity)

1
4

Multi-Cycle Processor

Fetch1 Fetch2

Decode
Execute

ALUSimple instructions
such as andi take a

single cycle to execute

1
5

Multi-Cycle Processor

Fetch1 Fetch2

Decode
Execute

ALU

Load1

Load2

MemoryComplex ones such
as lw take longer

1
6

Multi-Cycle Processor

Fetch1 Fetch2

Decode
Execute

ALU/Branch

Load1

Load2

Memory

We will try

① not to have too
many stages

② to have paths as
balanced as possible

1
7

Mealy or Moore?

Mealy FSM

Output depends on
input and state

Moore FSM

Output depends on
state only

Sometimes
this needs

more cycles…

…and
sometimes
this is not
acceptable

1
8

Building the Circuit

An “empty” FSM
(we still do not know

what we need to control…) Basic registers
we need

1
9

Add Progressively What We Need

We will need an
Instruction Register to

memorize the instruction
coming from memory

We will need to enable these registers
when there is something new to record
 we will have the FSM generate them

2
0

Follow the Functionality

When an instruction arrives into IR,
the controller needs to know what it is

(the next state depends on it!)
 connect IR to the controller

2
1

I-Type Instructions Need RF and ALU

More and more
control signals

addi t0, t1, 1234

2
2

I-Type Instructions Need RF and ALU

Controller

There is some ambiguity
in what we consider part
of the FSM and what not
(maybe the most trivial

parts are clearer outside)

2
3

R-Type Instructions Need a Second Operand
add t0, t1, t2

2
4

U-Type Instructions Write an Immediate
lui t0, 1234

2
5

Load and Stores Produce a Memory Address
lw t0, 16(t1)

2
6

Loads Write the Read Data into the RF
lw t0, 16(t1)

2
7

Stores Send an Operand to Memory
sw t0, 16(t1)

2
8

Branches Need to Write an Offset to the PC
beq t0, t1, 1234

…and bit 0 of the ALU result
matters to the PC update

Clearly, the PC is no
longer a simple register
but contains some logic
needed to compute the

new value…

2
9

jal Needs to Store PC + 4 in the RF
jal ra, imm

3
0

Jumps Need to Write an Address to the PC
jalr x0, 0(ra)

3
1

Fetch1 Fetch2

Decode
Execute

ALU/Branch

Load1

Load2

Memory

Time to Go Back to the FSM!

PC PC + 4

Once every loop
through the FSM

(= every instruction)
we want to update the PC

sel_addr 0

In Fetch1 we want the memory
address from the PC…

sel_addr 1

…but in Load1 we want the
address to come from the ALU!

3
2

And We Can Still Change the FSM…

Decode
Execute

ALU/Branch

Memory

update_PC 1 if Branch
rf_we 1 if ALU

Why testing again
something which we

already tested?

Decode
Execute
ALU Op

ALU

Memory

Execute
Branch

Op

Branch

update_PC 1

rf_we 1

Two separate states may be
simpler and cleaner…

(but either solution is fine!)

3
3

Do Not Write Verilog until Done!

• Verilog and VHDL are HDLs  Hardware Description Languages
• Describe something only when it is perfectly clear:

– You have drawn a diagram like the one of the previous slide
– You have clearly identified combinational and sequential blocks

• Always decompose complex sequential blocks
– Describe only sequential blocks that are simple registers (e.g., IR)
– Draw hierarchical diagrams until sequential blocks are trivial

• Use a hierarchical approach (much as in programming) and use
your diagrams to guide the creation of modules (e.g., PC)

3
4

Write Only Simple Stuff

Simple sequential
components

 Ready to write

Combinational
components

 Ready to write

Formal FSM
 Ready to write

3
5

“Open the Box” of Complex Stuff
Complex sequential

component (= not simple
register, not a memory)
 Not ready to write,

needs a diagram!

Complex combinational component
(= not just an “if” statement, not a

simple logic function)
 Probably, not ready to write, a

diagram makes it safer!

3
6

Detail Complex Combinational Modules

3
7

Write Verilog by Sticking to Basic Patterns

always @ (posedge clk)
begin
if (reset == 1)
q <= 0;

else if ((enable1 == 1) && (enable2 == 1))
q <= d;

end Sequential

always @ (*)
begin
if (a)
y = ~b;

else
y = b;

end

Combinational

You can write much
more complex

combinational blocks
(e.g., next state in FSMs)…

Verilog guidelines in Moodle

…but this is just about the
most complex sequential block

you want to write!
(only registers and counters)

3
8

Three always Blocks per FSM, Always!

Mealy

Moore

3
9

Beware of Zero-Delay Simulation!

CLK

/A

D

/B

Real delays suggest causality

A good timing diagram
even shows causality explicitly

with arrows

CLK

/A

D

/B

Alas, all this is lost in
zero-delay simulation

Consider redrawing by hand
in difficult debugging situations

4
0

References

• Patterson & Hennessy, COD – RISC-V Edition
– Chapter 4; only Section 4.1 to 4.5

	CS-200�Computer Architecture�—�Part 2a. Processor, I/Os, and Exceptions�Multicycle Processor
	The Contract between HW and SW
	The Processor
	Unified Memory
	A Big Finite-State Machine
	Single-Cycle Processor
	Propagation Time
	Increasing the Frequency?
	Two-Cycle Processor
	Not All Paths Are Born Equal!
	And Maybe Memories Are Sequential
	Multi-Cycle Processor
	Multi-Cycle Processor
	Multi-Cycle Processor
	Multi-Cycle Processor
	Multi-Cycle Processor
	Mealy or Moore?
	Building the Circuit
	Add Progressively What We Need
	Follow the Functionality
	I-Type Instructions Need RF and ALU
	I-Type Instructions Need RF and ALU
	R-Type Instructions Need a Second Operand
	U-Type Instructions Write an Immediate
	Load and Stores Produce a Memory Address
	Loads Write the Read Data into the RF
	Stores Send an Operand to Memory
	Branches Need to Write an Offset to the PC
	jal Needs to Store PC + 4 in the RF
	Jumps Need to Write an Address to the PC
	Time to Go Back to the FSM!
	And We Can Still Change the FSM…
	Do Not Write Verilog until Done!
	Write Only Simple Stuff
	“Open the Box” of Complex Stuff
	Detail Complex Combinational Modules
	Write Verilog by Sticking to Basic Patterns
	Three always Blocks per FSM, Always!
	Beware of Zero-Delay Simulation!
	References

